Dehydrogenation Properties and Catalytic Mechanism of the K2NiF6-Doped NaAlH4 System

ACS Omega. 2018 Dec 12;3(12):17100-17107. doi: 10.1021/acsomega.8b02281. eCollection 2018 Dec 31.

Abstract

The K2NiF6 catalytic effect on the NaAlH4 dehydrogenation properties was studied in this work. The desorption temperature was studied using temperature-programmed desorption and exhibited a lower onset hydrogen release after doped with different wt % of K2NiF6 (5, 10, 15 and 20 wt %). It was found that the NaAlH4 doped with 5 wt % K2NiF6 showed the optimal value that can reduce the onset desorption temperature of about 160 °C compared to 190 °C for the milled NaAlH4. The NaAlH4 + 5 wt % K2NiF6 sample showed faster desorption kinetics where 1.5 wt % of hydrogen was released in 30 min at 150 °C. In contrast, the milled NaAlH4 only released about 0.2 wt % within the same time and temperature. From the Kissinger analysis, the apparent activation energy was 114.7 kJ/mol for the milled NaAlH4 and 89.9 kJ/mol for the NaAlH4-doped 5 wt % K2NiF6, indicating that the addition of K2NiF6 reduced the activation energy for hydrogen desorption of NaAlH4. It is deduced that the new phases of AlNi, NaF, and KH that were formed in situ during the dehydrogenation process are the key factors for the improvement of dehydrogenation properties of NaAlH4.