Photochromic Materials by Postpolymerisation Surface Modification

ACS Omega. 2018 Nov 15;3(11):15554-15565. doi: 10.1021/acsomega.8b02521. eCollection 2018 Nov 30.

Abstract

Photochromic materials are available by a postpolymerization surface modification of diverse polymers in a multistep sequential process mediated, first, by carbene insertion chemistry, second, by diazonium coupling with a tethered precursor, and finally by coupling to a spiropyran. This three-step sequence is efficient, and surface loading densities of 1013 molecules cm-2 are typically achievable, leading to materials with observable photochromic and wettability behavior, which operate over multiple cycles without significant photobleaching or loss of efficacy. Materials suitable for application in this process include both reactive, but also lower surface energy polymers. Although the process is particularly efficient for high surface area materials, surface modification onto lower surface area substrates, while being intrinsically less efficient, is nonetheless sufficiently effective that changes in macroscopic photochromic properties are readily observable.