Tunable Surface Properties of Aluminum Oxide Nanoparticles from Highly Hydrophobic to Highly Hydrophilic

ACS Omega. 2017 Jun 6;2(6):2507-2514. doi: 10.1021/acsomega.7b00279. eCollection 2017 Jun 30.

Abstract

The formation of materials with tunable wettability is important for applications ranging from antifouling to waterproofing surfaces. We report the use of various low-cost and nonhazardous hydrocarbon materials to tune the surface properties of aluminum oxide nanoparticles (NPs) from superhydrophilic to superhydrophobic through covalent functionalization. The hydrocarbon surfaces are compared with a fluorinated surface for wettability and surface energy properties. The role of NPs' hydrophobicity on their dynamic interfacial behavior at the oil-water interface and their ability to form stable emulsions is also explored. The spray-coated NPs provide textured surfaces (regardless of functionality), with water contact angles (θ) of 10-150° based on their surface functionality. The superhydrophobic NPs are able to reduce the interfacial tension of various oil-water interfaces by behaving as surfactants.