Estrogen receptor 1 mutations in 260 cervical cancer samples from Chinese patients

Oncol Lett. 2019 Sep;18(3):2771-2776. doi: 10.3892/ol.2019.10612. Epub 2019 Jul 15.

Abstract

Cervical cancer is one of the leading causes of cancer-associated mortality among females; however, the underlying molecular mechanisms of its carcinogenesis remain largely unclear. Previous comprehensive genomic studies have revealed prevalent estrogen receptor 1 (ESR1) mutations in breast cancer, which are rare in certain other types of cancer. To the best of our knowledge, it is unknown whether ESR1 mutations also exist in cervical cancer. Considering the evidence that cervical cancer shares certain genetic aberrations with breast cancer, and that the progression of both breast and cervical cancers can be affected by estrogen, it is possible that cervical cancer may also harbor ESR1 mutations. In the present study, a total of 260 Chinese cervical cancer samples with distinct subtypes were tested for the presence of ESR1 mutations. A total of three heterozygous missense ESR1 mutations, p.K303R (c.908A>G), p.T311M (c.932C>T) and p.Y537C (c.1610A>G), were identified in 3/207 (1.4%) cervical squamous cell carcinoma samples, which were absent in 27 adenosquamous carcinomas and 26 adenocarcinomas samples. Of the three individuals with an ESR1mutation, 1 patient was also diagnosed with ovarian endometriosis and the other 2 patients were diagnosed with a uterine fibroid. A bioinformatics analysis suggested that these ESR1 mutations may be pathogenic by promoting the development of cervical cancer. Furthermore, a previous comprehensive study confirmed that individuals with cervical squamous cell carcinoma possessed ESR1 mutations. These combined studies indicate that ESR1 mutations may participate in the carcinogenesis of cervical squamous cell carcinoma, albeit at a low frequency. In conclusion, the present study identified three potentially pathogenic ESR1 mutations in Chinese cervical squamous cell carcinoma samples, but not in other subtypes.

Keywords: Chinese; cervical cancer; estrogen receptor 1; mutation.