Art-omics: multi-omics meet archaeology and art conservation

Microb Biotechnol. 2020 Mar;13(2):435-441. doi: 10.1111/1751-7915.13480. Epub 2019 Aug 27.

Abstract

Multi-omics can informally be described as the combined use of high-throughput techniques allowing the characterization of complete microbial communities by the sequencing/identification of total pools of biomolecules including DNA, proteins or metabolites. These techniques have allowed an unprecedented level of knowledge on complex microbial ecosystems, which is having key implications in land and marine ecology, industrial biotechnology or biomedicine. Multi-omics have recently been applied to artistic or archaeological objects, with the goal of either contributing to shedding light on the original context of the pieces and/or to inform conservation approaches. In this minireview, we discuss the application of -omic techniques to the study of prehistoric artworks and ancient man-made objects in three main technical blocks: metagenomics, proteomics and metabolomics. In particular, we will focus on how proteomics and metabolomics can provide paradigm-breaking results by unambiguously identifying peptides associated with a given, palaeo-cultural context; and we will discuss how metagenomics can be central for the identification of the microbial keyplayers on artworks surfaces, whose conservation can then be approached by a range of techniques, including using selected microorganisms as 'probiotics' because of their direct or indirect effect in the stabilization and preservation of valuable art objects.

Publication types

  • Review

MeSH terms

  • Archaeology*
  • Humans
  • Metabolomics
  • Metagenomics
  • Microbiota*
  • Proteomics