Photoluminescent Hydroxylapatite: Eu3+ Doping Effect on Biological Behaviour

Nanomaterials (Basel). 2019 Aug 22;9(9):1187. doi: 10.3390/nano9091187.

Abstract

Luminescent europium-doped hydroxylapatite (EuXHAp) nanomaterials were successfully obtained by co-precipitation method at low temperature. The morphological, structural and optical properties were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR), UV-Vis and photoluminescence (PL) spectroscopy. The cytotoxicity and biocompatibility of EuXHAp were also evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) assay, oxidative stress assessment and fluorescent microscopy. The results reveal that the Eu3+ has successfully doped the hexagonal lattice of hydroxylapatite. By enhancing the optical features, these EuXHAp materials demonstrated superior efficiency to become fluorescent labelling materials for bioimaging applications.

Keywords: MTT assay; europium doped hydroxylapatite; fluorescent microscopy; oxidative stress assessment; photoluminescence.