Boosting Fenton-Like Reactions via Single Atom Fe Catalysis

Environ Sci Technol. 2019 Oct 1;53(19):11391-11400. doi: 10.1021/acs.est.9b03342. Epub 2019 Sep 5.

Abstract

The maximization of the numbers of exposed active sites in supported metal catalysts is important to achieve high reaction activity. In this work, a simple strategy for anchoring single atom Fe on SBA-15 to expose utmost Fe active sites was proposed. Iron salts were introduced into the as-made SBA-15 containing the template and calcined for simultaneous decomposition of the iron precursor and the template, resulting in single atom Fe sites in the nanopores of SBA-15 catalysts (SAFe-SBA). X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and extended X-ray absorption fine structure (EXAFS) imply the presence of single atom Fe sites. Furthermore, EXAFS analysis suggests the structure of one Fe center with four O atoms, and density functional theory calculations (DFT) simulate this structure. The catalytic performances of SAFe-SBA were evaluated in Fenton-like catalytic oxidation of p-hydroxybenzoic acid (HBA) and phenol. It was found that the single atom SAFe-SBA catalysts displayed superior catalytic activity to aggregated iron sites (AGFe-SBA) in both HBA and phenol degradation, demonstrating the advantage of SAFe-SBA in catalysis.

MeSH terms

  • Catalysis
  • Iron*
  • Oxidation-Reduction
  • Phenol*
  • X-Ray Diffraction

Substances

  • Phenol
  • Iron