Hypoxia exacerbates nonalcoholic fatty liver disease via the HIF-2α/PPARα pathway

Am J Physiol Endocrinol Metab. 2019 Oct 1;317(4):E710-E722. doi: 10.1152/ajpendo.00052.2019. Epub 2019 Aug 20.

Abstract

This study aimed to investigate whether hypoxia can affect nonalcoholic fatty liver disease (NAFLD) progression and the associated mechanisms, specifically regarding the hypoxia-inducible factor (HIF)-2α/peroxisome proliferator-activated receptor (PPAR)α pathway in vitro and in vivo. Recent studies have reported that, compared with HIF-1α, HIF-2α has different effects on lipid metabolism. We propose hypoxia may exacerbate NAFLD by the HIF-2α upregulation-induced suppression of PPARα in the liver. To verify this hypothesis, a steatotic human hepatocyte (L02) cell line treated with free fatty acids and a mouse model of NAFLD fed a high-fat diet were used. Steatotic hepatocytes were treated with hypoxia, HIF-2α siRNA, PPARα agonists, and inhibitors, respectively. Meanwhile, the NAFLD mice were exposed to intermittent hypoxia or intermittent hypoxia with PPARα agonists. The relative gene expression levels of HIF-1α, HIF-2α, mitochondrial function, fatty acid β-oxidation and lipogenesis were examined. Evidence of lipid accumulation was observed, which demonstrated that, compared with normal hepatocytes, steatotic hepatocytes exhibited higher sensitivity to hypoxia. This phenomenon was closely associated with HIF-2α. Moreover, lipid accumulation in hepatocytes was ameliorated by HIF-2α silencing or a PPARα agonist, despite the hypoxia treatment. HIF-2α overexpression under hypoxic conditions suppressed PPARα, leading to PGC-1α, NRF-1, ESRRα downregulation, and mitochondrial impairment. Additionally, β-oxidation genes such as CPT1α, CPT2α, ACOX1, and ACOX2 were downregulated and lipogenesis genes including LXRα, FAS, and SCD1 were upregulated by hypoxia. Therefore, we concluded that HIF-2α overexpression induced by hypoxia aggravated NAFLD progression by suppressing fatty acid β-oxidation and inducing lipogenesis in the liver via PPARα.

Keywords: HIF-2α; NAFLD; PPARα; hypoxia; mitochondria.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / genetics*
  • Cell Line
  • Diet, High-Fat
  • Hepatocytes / metabolism
  • Humans
  • Hypoxia / complications
  • Hypoxia / genetics*
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics*
  • Lipid Metabolism / genetics
  • Mice
  • Mice, Inbred C57BL
  • Mitochondria, Liver / genetics
  • Mitochondria, Liver / metabolism
  • Non-alcoholic Fatty Liver Disease / complications
  • Non-alcoholic Fatty Liver Disease / genetics*
  • PPAR alpha / genetics*
  • RNA, Small Interfering / pharmacology
  • Signal Transduction / genetics*

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • Hif1a protein, mouse
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • PPAR alpha
  • PPARA protein, human
  • Ppara protein, mouse
  • RNA, Small Interfering
  • endothelial PAS domain-containing protein 1