Modeling the Quality of Player Passing Decisions in Australian Rules Football Relative to Risk, Reward, and Commitment

Front Psychol. 2019 Aug 2:10:1777. doi: 10.3389/fpsyg.2019.01777. eCollection 2019.

Abstract

The value of player decisions has typically been measured by changes in possession expectations, rather than relative to the value of a player's alternative options. This study presents a mathematical approach to the measurement of passing decisions of Australian Rules footballers that considers the risk and reward of passing options. A new method for quantifying a player's spatial influence is demonstrated through a process called commitment modeling, in which the bounds and density of a player's motion model are fit on empirical commitment to contests, producing a continuous representation of a team's spatial ownership. This process involves combining the probability density functions of contests that a player committed to, and those they did not. Spatiotemporal player tracking data was collected for AFL matches played at a single stadium in the 2017 and 2018 seasons. It was discovered that the probability of a player committing to a contest decreases as a function of their velocity and of the ball's time-to-point. Furthermore, the peak density of player commitment probabilities is at a greater distance in front of a player the faster they are moving, while their ability to participate in contests requiring re-orientation diminishes at higher velocities. Analysis of passing decisions revealed that, for passes resulting in a mark, opposition pressure is bimodal, with peaks at spatial dominance equivalent to no pressure and to a one-on-one contest. Density of passing distance peaks at 17.3 m, marginally longer than the minimum distance of a legal mark (15 m). Conversely, the model presented in this study identifies long-range options as have higher associated decision-making values, however a lack of passes in these ranges may be indicative of differing tactical behavior or a difficulty in identifying long-range options.

Keywords: Australian Rules football; decision-making; motion models; player tracking; spatiotemporal; team sports.