Silencing Bach1 alters aging-related changes in the expression of Nrf2-regulated genes in primary human bronchial epithelial cells

Arch Biochem Biophys. 2019 Sep 15:672:108074. doi: 10.1016/j.abb.2019.108074. Epub 2019 Aug 15.

Abstract

Nrf2 is the master transcription factor regulating the basal and inducible expression of antioxidant genes. With aging, the basal Nrf2 activity is increased but oxidant/electrophile-enhanced activation of Nrf2 signaling is diminished, and these changes are accompanied by an increased expression of Bach1, a repressor of Nrf2 signaling. In this limited follow-up study, we explored how Bach1 may be involved in aging-related alteration in Nrf2 signaling in primary human bronchial epithelial (HBE) cells. Silencing Bach1 with siRNA increased the basal mRNA expression of Nrf2 regulated genes including glutamate cysteine ligase catalytic (GCLC) and modifier subunit (GCLM), NAD(P)H oxidoreductase 1(NQO-1) and heme oxygenase 1(HO-1), in HBE cells from both young (aged 21-29 years) and older (aged 61-69 years) donors. On the other hand, Bach1 silencing affected the induction of Nrf2-regulated genes differentially in young and older HBE cells. Bach1 silencing significantly enhanced sulforaphane-induced expression of HO-1 but had no effect on that of GCLC, GCLM, and NQO1 in young HBE cells. In contrast, Bach1 silencing enhanced sulforaphane-induced expression of GCLC, GCLM and HO-1 but had no effect on that of NQO-1 in older HBE cells. In conclusion, these results suggest that increased Bach1 contributes to aging-related loss of electrophile-enhanced Nrf2 signaling.

Keywords: Aging; Bach1; Glutamate cysteine ligase; Heme oxygenase; Nrf2; Sulforaphane.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Adult
  • Aged
  • Aging / metabolism*
  • Basic-Leucine Zipper Transcription Factors / genetics*
  • Basic-Leucine Zipper Transcription Factors / metabolism*
  • Bronchi / cytology
  • Epithelial Cells / metabolism*
  • Gene Expression / physiology
  • Gene Silencing*
  • Glutamate-Cysteine Ligase / genetics
  • Heme Oxygenase-1 / genetics
  • Humans
  • Isothiocyanates / pharmacology
  • Middle Aged
  • NAD(P)H Dehydrogenase (Quinone) / genetics
  • NF-E2-Related Factor 2 / metabolism*
  • RNA, Messenger / metabolism
  • RNA, Small Interfering / genetics
  • Signal Transduction / drug effects
  • Sulfoxides
  • Young Adult

Substances

  • BACH1 protein, human
  • Basic-Leucine Zipper Transcription Factors
  • Isothiocyanates
  • NF-E2-Related Factor 2
  • NFE2L2 protein, human
  • RNA, Messenger
  • RNA, Small Interfering
  • Sulfoxides
  • HMOX1 protein, human
  • Heme Oxygenase-1
  • NAD(P)H Dehydrogenase (Quinone)
  • NQO1 protein, human
  • Glutamate-Cysteine Ligase
  • sulforaphane