Facile Synthesis of Ultra-Small Few-Layer Nanostructured MoSe2 Embedded on N, P Co-Doped Bio-Carbon for High-Performance Half/Full Sodium-Ion and Potassium-Ion Batteries

Chemistry. 2019 Oct 17;25(58):13411-13421. doi: 10.1002/chem.201902899. Epub 2019 Sep 17.

Abstract

Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2 /NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g-1 at 100 mA g-1 after 100 cycles) and impressive long-term cycling performance (192 mAh g-1 at 5 A g-1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2 -based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2 /NP-C-2 composite anode with a Na3 V2 (PO4 )3 cathode also exhibits a satisfactory capacity of 215 mAh g-1 at 500 mA g-1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g-1 at 1 A g-1 even after 250 cycles for PIBs.

Keywords: MoSe2; N, P co-doped carbon; few-layer nanostructures; sodium/potassium-ion batteries; sustainable natural biomass.