Test-retest reliability of a smartphone app for measuring core stability for two dynamic exercises

PeerJ. 2019 Aug 9:7:e7485. doi: 10.7717/peerj.7485. eCollection 2019.

Abstract

Background: Recently, there has been growing interest in using smartphone applications to assess gait speed and quantify isometric core stability exercise intensity. The purpose of this study was to investigate the between-session reliability and minimal detectable change of a smartphone app for two dynamic exercise tests of the lumbopelvic complex.

Methods: Thirty-three healthy young and active students (age: 22.3 ± 5.9 years, body weight: 66.9 ± 11.3 kg, height: 167.8 ± 10.3 cm) participated in this study. Intraclass correlation coefficient (ICC), coefficient of variation (%CV), and Bland-Altman plots were used to verify the reliability of the test. The standard error of measurement (SEM) and the minimum detectable difference (MDD) were calculated for clinical applicability.

Results: The ICCs ranged from 0.73 to 0.96, with low variation (0.9% to 4.8%) between days of assessments. The Bland-Altman plots and one-sample t-tests (p > 0.05) indicated that no dynamic exercise tests changed systematically. Our analyses showed that SEM 0.6 to 1.5 mm/s-2) and MDD (2.1 to 3.5 mm/s-2).

Conclusion: The OCTOcore app is a reliable tool to assess core stability for two dynamic exercises. A minimal change of 3.5 mm/s-2 is needed to be confident that the change is not a measurement error between two sessions.

Keywords: Accelerometer; Assessment; Lumbopelvic-hip complex; Mobile technology; Screening.

Grants and funding

This research received no external funding.