Alleviation of cadmium-induced genotoxicity and cytotoxicity by calcium chloride in faba bean (Vicia faba L. var. minor) roots

Physiol Mol Biol Plants. 2019 Jul;25(4):921-931. doi: 10.1007/s12298-019-00681-5. Epub 2019 Jun 5.

Abstract

Alleviation of cadmium-induced root genotoxicity and cytotoxicity by calcium chloride (CaCl2) in faba bean (Vicia faba L. var. minor) seedlings were studied. Faba bean seeds were treated with H2O or 2% CaCl2 for 6 h before germination. Seeds were then exposed to 0 and 50 µM CdCl2 concentrations for 7 days. Genotoxic damaging effects of Cd was examined through the determination of the mitotic index (MI), chromosomal aberrations (CA) and micronucleus (MN) in the meristem cells of faba bean roots. Similarly, effects of Cd stress on metal accumulation, total membrane lipid contents, total fatty acid composition (TFA), lipid peroxidation as indicated by malondialdehyde production, soluble protein and non-protein thiols (NP-SH) contents, hydrogen peroxide production and the activities of superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX) were evaluated after 7 days of Cd stress in the seedling roots. Cd stress resulted in the reduction of MI, in addition to MN formation and CA induction in the roots of non-primed seeds (treated with H2O). Moreover, Cd induced lipid peroxidation, H2O2 overproduction and loss of membrane lipid amount and soluble protein content, and changes in the TFA composition in roots of faba bean seedlings. SOD activity declined, but CAT and GPX activities increased. However, seed pre-treatment with CaCl2 attenuated the genotoxic and cytotoxic effects of Cd on Vicia faba roots. The results showed that CaCl2 induced reduction of Cd accumulation, improved cell membrane stability and increased the antioxidant defence systems, thus reducing and alleviating Cd genotoxicity and oxidative damage.

Keywords: Cadmium; Genotoxicity; Membrane lipid; Oxidative stress; Roots; Seed priming.