Investigating the effect of positional isomerism on the assembly of zirconium phosphonates based on tritopic linkers

Dalton Trans. 2020 Mar 28;49(12):3662-3666. doi: 10.1039/c9dt02463h. Epub 2019 Aug 9.

Abstract

We report on the use of a novel tritopic phosphonic linker, 2,4,6-tris[3-(phosphonomethyl)phenyl]-1,3,5-triazine, for the synthesis of a layered zirconium phosphonate, named UPG-2. Comparison with the structure of the permanently porous UPG-1, based on the related linker 2,4,6-tris[4-(phosphonomethyl)phenyl]-1,3,5-triazine, reveals that positional isomerism disrupts the porous architecture in UPG-2 by preventing the formation of infinitely extended chains connected through Zr-O-P-O-Zr bonds. The presence of free, acidic P-OH groups and an extended network of hydrogen bonds makes UPG-2 a good proton conductor, reaching values as high as 5.7 × 10-4 S cm-1.