The epinephrine-induced PGE2 reduces Na+/K+ ATPase activity in Caco-2 cells via PKC, NF-κB and NO

PLoS One. 2019 Aug 8;14(8):e0220987. doi: 10.1371/journal.pone.0220987. eCollection 2019.

Abstract

We showed previously an epinephrine-induced inhibition of the Na+/K+ ATPase in Caco-2 cells mediated via PGE2. This work is an attempt to further elucidate mediators downstream of PGE2 and involved in the observed inhibitory effect. The activity of the Na+/K+ ATPase was assayed by measuring the amount of inorganic phosphate liberated in presence and absence of ouabain, a specific inhibitor of the enzyme. Changes in the protein expression of the Na+/K+ ATPase were investigated by western blot analysis which revealed a significant decrease in the abundance of the ATPase in plasma membranes. Treating the cells with epinephrine or PGE2 in presence of SC19220, a blocker of EP1 receptors abolished completely the effect of the hormone and the prostaglandin while the effect was maintained unaltered in presence of antagonists to all other receptors. Treatment with calphostin C, PTIO, ODQ or KT5823, respective inhibitors of PKC, NO, soluble guanylate cyclase and PKG, abrogated completely the effect of epinephrine and PGE2, suggesting an involvement of these mediators. A significant inhibition of the ATPase was observed when cells were treated with PMA, an activator of PKC or with 8-Br-cGMP, a cell permeable cGMP analogue. PMA did reduce the protein expression of IκB, as shown by western blot analysis, and its effect on the ATPase was not manifested in presence of an inhibitor of NF-κB while that of SNAP, a nitric oxide donor, was not affected. The results infer that NF-κB is downstream PKC and upstream NO. The data support a pathway in which epinephrine induces the production of PGE2 which binds to EP1 receptors and activates PKC and NF-κB leading to NO synthesis. The latter activates soluble guanylate cyclase resulting in cGMP production and activation of PKG which through direct or indirect phosphorylation inhibits the Na+/K+ ATPase by inducing its internalization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Caco-2 Cells
  • Cyclic GMP / metabolism
  • Cyclic GMP-Dependent Protein Kinases / metabolism
  • Dinoprostone / pharmacology*
  • Enzyme Activation / drug effects
  • Epinephrine / pharmacology*
  • Humans
  • NF-kappa B / metabolism*
  • Nitric Oxide / metabolism*
  • Protein Kinase C / metabolism*
  • Receptors, Prostaglandin E, EP1 Subtype / metabolism
  • Signal Transduction / drug effects
  • Sodium-Potassium-Exchanging ATPase / metabolism*
  • Soluble Guanylyl Cyclase / metabolism

Substances

  • NF-kappa B
  • Receptors, Prostaglandin E, EP1 Subtype
  • Nitric Oxide
  • Cyclic GMP-Dependent Protein Kinases
  • Protein Kinase C
  • Soluble Guanylyl Cyclase
  • Sodium-Potassium-Exchanging ATPase
  • Cyclic GMP
  • Dinoprostone
  • Epinephrine

Grants and funding

This work was funded by SK University Research Board. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.