Patterning of Nanoparticle-Based Aerogels and Xerogels by Inkjet Printing

Small. 2019 Sep;15(39):e1902186. doi: 10.1002/smll.201902186. Epub 2019 Aug 8.

Abstract

Nanoparticle-based voluminous 3D networks with low densities are a unique class of materials and are commonly known as aerogels. Due to the high surface-to-volume ratio, aerogels and xerogels might be suitable materials for applications in different fields, e.g. photocatalysis, catalysis, or sensing. One major difficulty in the handling of nanoparticle-based aerogels and xerogels is the defined patterning of these structures on different substrates and surfaces. The automated manufacturing of nanoparticle-based aerogel- or xerogel-coated electrodes can easily be realized via inkjet printing. The main focus of this work is the implementation of the standard nanoparticle-based gelation process in a commercial inkjet printing system. By simultaneously printing semiconductor nanoparticles and a destabilization agent, a 3D network on a conducting and transparent surface is obtained. First spectro-electrochemical measurements are recorded to investigate the charge-carrier mobility within these 3D semiconductor-based xerogel networks.

Keywords: aerogels; gelation via inkjet printing; inkjet printing; semiconductor nanoparticles; xerogels.