Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan

Environ Sci Pollut Res Int. 2020 Nov;27(32):39676-39692. doi: 10.1007/s11356-019-06072-3. Epub 2019 Aug 5.

Abstract

Land use/land cover (LULC) change has serious implications for environment as LULC is directly related to land degradation over a period of time and results in many changes in the environment. Monitoring the locations and distributions of LULC changes is important for establishing links between regulatory actions, policy decisions, and subsequent LULC activities. The normalized difference vegetation index (NDVI) has the potential ability to identify the vegetation features of various eco-regions and provides valuable information as a remote sensing tool in studying vegetation phenology cycles. Similarly, the normalized difference built-up index (NDBI) may be used for quoting built-up land. This study aims to detect the pattern of LULC, NDBI, and NDVI change in Lodhran district, Pakistan, from the Landsat images taken over 40 years, considering four major LULC types as follows: water bodies, built-up area, bare soil, and vegetation. Supervised classification was applied to detect LULC changes observed over Lodhran district as it explains the maximum likelihood algorithm in software ERDAS imagine 15. Most farmers (46.6%) perceived that there have been extreme changes of onset of temperature, planting season, and less precipitation amount in Lodhran district in the last few years. In 2017, building areas increased (4.3%) as compared to 1977. NDVI values for Lodhran district were highest in 1977 (up to + 0.86) and lowest in 1997 (up to - 0.33). Overall accuracy for classification was 86% for 1977, 85% for 1987, 86% for 1997, 88% for 2007, and 95% for 2017. LULC change with soil types, temperature, and NDVI, NDBI, and slope classes was common in the study area, and the conversions of bare soil into vegetation area and built-up area were major changes in the past 40 years in Lodhran district. Lodhran district faces rising temperatures, less irrigation water, and low rainfall. Farmers are aware of these climatic changes and are adapting strategies to cope with the effects but require support from government.

Keywords: Climate change; Farmers’ perception; Geographic information system; Normalized difference built-up index; Normalized difference vegetation index; Remote sensing.

MeSH terms

  • Environmental Monitoring
  • Geographic Information Systems*
  • Pakistan
  • Seasons
  • Urbanization*