Development and evaluation of a new pediatric mixed-reality model for neurosurgical training

J Neurosurg Pediatr. 2019 Aug 2;24(4):423-432. doi: 10.3171/2019.2.PEDS18597.

Abstract

Objective: Craniosynostosis is a premature cranial suture junction and requires a craniectomy to decrease cranial compression and remodel the affected areas of the skull. However, mastering these neurosurgical procedures requires many years of supervised training. The use of surgical simulation can reduce the risk of intraoperative error. The authors propose a new instrument for neurosurgical education, which mixes reality with virtual and realistic simulation for repair of craniosynostosis (scaphocephaly type).

Methods: This study tested reality simulators with a synthetic thermo-retractile/thermosensitive rubber joined with different polymers. To validate the model, 18 experienced surgeons participated in this study using 3D videos developed using 3DS Max software. Renier's "H" technique for craniosynostosis correction was applied during the simulation. All participants completed questionnaires to evaluate the simulator.

Results: An expert surgical team approved the craniosynostosis reality and virtual simulators. More than 94% of participants found the simulator relevant, considering aspects such as weight, surgical positioning, dissection by planes, and cranial reconstruction. The consistency and material resistance were also approved on average by more than 60% of the surgeons.

Conclusions: The virtual simulator demands a high degree of effectiveness with 3D perception in anatomy and operative strategies in neurosurgical training. Physical and virtual simulation with mixed reality required psychomotor and cognitive abilities otherwise acquired only during practical surgical training with supervision.

Keywords: craniofacial; craniosynostosis; mixed-reality model; pediatric neurosurgery; realistic; simulation; training; virtual.