Skeletal muscle interstitial Po2 kinetics during recovery from contractions

J Appl Physiol (1985). 2019 Oct 1;127(4):930-939. doi: 10.1152/japplphysiol.00297.2019. Epub 2019 Aug 1.

Abstract

The oxygen partial pressure in the interstitial space (Po2 is) drives O2 into the myocyte via diffusion, thus supporting oxidative phosphorylation. Although crucial for metabolic recovery and the capacity to perform repetitive tasks, the time course of skeletal muscle Po2 is during recovery from contractions remains unknown. We tested the hypothesis that Po2 is would recover to resting values and display considerable on-off asymmetry (fast on-, slow off-kinetics), reflective of asymmetric capillary hemodynamics. Microvascular Po2 (Po2 mv) was also evaluated to test the hypothesis that a significant transcapillary gradient (ΔPo2 = Po2 mv - Po2 is) would be sustained during recovery. Po2 mv and Po2 is (expressed in mmHg) were determined via phosphorescence quenching in the exposed rat spinotrapezius muscle during and after submaximal twitch contractions (n = 12). Po2 is rose exponentially (P < 0.05) from end-contraction (11.1 ± 5.1), such that the end-recovery value (17.9 ± 7.9) was not different from resting Po2 is (18.5 ± 8.1; P > 0.05). Po2 is off-kinetics were slower than on-kinetics (mean response time: 53.1 ± 38.3 versus 18.5 ± 7.3 s; P < 0.05). A significant transcapillary ΔPo2 observed at end-contraction (16.6 ± 7.4) was maintained throughout recovery (end-recovery: 18.8 ± 9.6; P > 0.05). Consistent with our hypotheses, muscle Po2 is recovered to resting values with slower off-kinetics compared with the on-transient in line with the on-off asymmetry for capillary hemodynamics. Maintenance of a substantial transcapillary ΔPo2 during recovery supports that the microvascular-interstitium interface provides considerable resistance to O2 transport. As dictated by Fick's law (V̇o2 = Do2 × ΔPo2), modulation of O2 flux (V̇o2) during recovery must be achieved via corresponding changes in effective diffusing capacity (Do2; mainly capillary red blood cell hemodynamics and distribution) in the face of unaltered ΔPo2.NEW & NOTEWORTHY Capillary blood-myocyte O2 flux (V̇o2) is determined by effective diffusing capacity (Do2; mainly erythrocyte hemodynamics and distribution) and microvascular-interstitial Po2 gradients (ΔPo2 = Po2 mv - Po2 is). We show that Po2 is demonstrates on-off asymmetry consistent with Po2 mv and erythrocyte kinetics during metabolic transitions. A substantial transcapillary ΔPo2 was preserved during recovery from contractions, indicative of considerable resistance to O2 diffusion at the microvascular-interstitium interface. This reveals that effective Do2 declines in step with V̇o2 during recovery, as per Fick's law.

Keywords: exercise; microcirculation; muscle oxygenation; oxygen diffusion; transcapillary gradients.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Capillaries / metabolism
  • Capillaries / physiology
  • Hemodynamics / physiology
  • Kinetics
  • Male
  • Microcirculation / physiology
  • Muscle Cells / metabolism
  • Muscle Cells / physiology
  • Muscle Contraction / physiology*
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / physiology*
  • Oxygen / metabolism*
  • Oxygen Consumption / physiology*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Oxygen