Synthesis, X-ray Crystal Structure, and Photochromism of a Sandwich-Type Mono-Aluminum Complex Composed of Two Tri-Lacunary α-Dawson-Type Polyoxotungstates

Materials (Basel). 2019 Jul 26;12(15):2383. doi: 10.3390/ma12152383.

Abstract

The synthesis and molecular structure of a dimeric, mono-aluminum complex composed of two tri-lacunary α-Dawson polyoxometalates, [H14Al(B-α-P2W15O56)2]7- (1), is described herein. The tetra-n-butylammonium salt of 1, [(n-C4H9)4N]7[H14Al(B-α-P2W15O56)2] (TBA-1) was prepared by passing an aqueous solution of K6[B-α-H3P2W15O59{Al(OH2)}3]⋅14H2O through an ion-exchange resin column (H+-form), followed by addition of tetra-n-butylammonium bromide. Analytically pure and colorless crystals of TBA-1 were obtained via vapor diffusion from acetonitrile/methanol at ~25 °C. Single-crystal X-ray structure analysis revealed that a six-coordinate aluminum ion was sandwiched between two tri-lacunary α-Dawson-type units, resulting in an overall C2h symmetry. The characterization of TBA-1 was accomplished by elemental analyses, thermogravimetric/differential thermal analyses, Fourier-transform infrared spectroscopy, and solution 31P nuclear magnetic resonance spectroscopy. The photochromic properties of TBA-1 were also characterized in methanol under light irradiation (λ = 365 nm and ≥400 nm).

Keywords: X-ray crystallography; aluminum complex; ion-exchange resin; photochromic property; polyoxometalate.