Low mutational load in pediatric medulloblastoma still translates into neoantigens as targets for specific T-cell immunotherapy

Cytotherapy. 2019 Sep;21(9):973-986. doi: 10.1016/j.jcyt.2019.06.009. Epub 2019 Jul 25.

Abstract

Background: Medulloblastoma is the most common malignant brain tumor in childhood and adolescence. Although some patients present with distinct genetic alterations, such as mutated TP53 or MYC amplification, pediatric medulloblastoma is a tumor entity with minimal mutational load and low immunogenicity.

Methods: We identified tumor-specific mutations using next-generation sequencing of medulloblastoma DNA and RNA derived from primary tumor samples from pediatric patients. Tumor-specific mutations were confirmed using deep sequencing and in silico analyses predicted high binding affinity of the neoantigen-derived peptides to the patients' human leukocyte antigen molecules. Tumor-specific peptides were synthesized and used to induce a de novo T-cell response characterized by interferon gamma and tumor necrosis factor alpha release of CD8+ cytotoxic T cells in vitro.

Results: Despite low mutational tumor burden, at least two immunogenic tumor-specific peptides were identified in each patient. T cells showed a balanced CD4/CD8 ratio and mostly effector memory phenotype. Induction of a CD8-specific T-cell response was achieved for the neoepitopes derived from Histidine Ammonia-Lyase (HAL), Neuraminidase 2 (NEU2), Proprotein Convertase Subtilisin (PCSK9), Programmed Cell Death 10 (PDCD10), Supervillin (SVIL) and tRNA Splicing Endonuclease Subunit 54 (TSEN54) variants.

Conclusion: Detection of patient-specific, tumor-derived neoantigens confirms that even in tumors with low mutational load a molecular design of targets for specific T-cell immunotherapy is possible. The identified neoantigens may guide future approaches of adoptive T-cell transfer, transgenic T-cell receptor transfer or tumor vaccination.

Keywords: adoptive T-cell transfer; medulloblastoma; neoantigen; peptide vaccination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Amino Acid Sequence
  • Antigens, Neoplasm / immunology*
  • Child
  • Epitopes / immunology
  • Female
  • Humans
  • Immunotherapy*
  • Infant
  • Male
  • Medulloblastoma / genetics*
  • Medulloblastoma / immunology
  • Medulloblastoma / therapy*
  • Mutation / genetics*
  • Peptides / chemistry
  • T-Lymphocytes / immunology*

Substances

  • Antigens, Neoplasm
  • Epitopes
  • Peptides