Orthorhombic HfO2 with embedded Ge nanoparticles in nonvolatile memories used for the detection of ionizing radiation

Nanotechnology. 2019 Nov 1;30(44):445501. doi: 10.1088/1361-6528/ab352b.

Abstract

Trilayer memory capacitors of control HfO2/floating gate of Ge nanoparticles in HfO2/tunnel HfO2/Si substrate deposited by magnetron sputtering and subsequently annealed are investigated for the first time for applications in radiation dosimetry. In the floating gate (FG), amorphous Ge nanoparticles (NPs) are arranged in two rows inside the HfO2 matrix. The HfO2 matrix is formed of orthorhombic/tetragonal nanocrystals (NCs). The adjacent thin films to the FG are also formed of orthorhombic/tetragonal HfO2 NCs. This phase is formed during annealing, in samples with thick control HfO2, in the presence of Ge, being induced by the stress. In the rest of the control oxide, HfO2 NCs are monoclinic. Orthorhombic HfO2 has ferroelectric properties and therefore enhances the memory window produced by charge storage in Ge NPs to above 6 V. The high sensitivity of 0.8 mV Gy-1 to α particle irradiation from a 241Am source was measured by monitoring the flatband potential during radiation exposure after electrical writing of the memory.