Development of ERK1/2 inhibitors as a therapeutic strategy for tumour with MAPK upstream target mutations

J Drug Target. 2020 Feb;28(2):154-165. doi: 10.1080/1061186X.2019.1648477. Epub 2019 Aug 13.

Abstract

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylate a variety of substrates that play key roles in promoting cell survival and proliferation. Many inhibitors, acting on upstream of the ERK pathway, exhibit excellent antitumor activity. However, drug-resistant tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling. ERK1/2 inhibitors have shown clinical efficacy as a therapeutic strategy for the treatment of tumours with mitogen-activated protein kinase (MAPK) upstream target mutations. These inhibitors may be effective against cancers with altered MAPK upstream pathway and may be used as a possible strategy to overcome acquired resistance to MAPK inhibitors. In this review, we describe the mechanism and types of ERK1/2 inhibitors, summarise the current development status of small-molecule ERK1/2 inhibitors, including the preclinical data and clinical study progress, and discuss the future research directions for the application of ERK1/2 inhibitors.

Keywords: ERK1/2 inhibitors; MAPK pathway; clinical; drug resistant; preclinical; tumour.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Drug Development
  • Drug Resistance, Neoplasm
  • Humans
  • Mitogen-Activated Protein Kinase 1 / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase 3 / antagonists & inhibitors
  • Mutation
  • Neoplasms / drug therapy*
  • Neoplasms / enzymology
  • Neoplasms / genetics
  • Protein Kinase Inhibitors / pharmacology*

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • MAPK1 protein, human
  • MAPK3 protein, human
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3