Enhanced Refinement of Al-Zn-Mg-Cu-Zr Alloy via Internal Cooling with Annular Electromagnetic Stirring above the Liquidus Temperature

Materials (Basel). 2019 Jul 23;12(14):2337. doi: 10.3390/ma12142337.

Abstract

There are two critical stages of grain refinement during solidification: above and below the liquidus temperature. The key to improve the refinement potential is ensuring the nucleation sites precipitate in large quantities and dispersed in the melt above liquidus. In this work, internal cooling with annular electromagnetic stirring was applied to an Al-Zn-Mg-Cu-Zr alloy at a temperature above liquidus. A systematic experimental study on the grain refining potential was performed by combining different melt treatments and pouring temperatures. The results indicate that internal cooling with annular electromagnetic stirring (IC-AEMS) had a significantly superior grain refining potency for the alloy compared to traditional electromagnetic stirring (EMS). In addition, homogeneous and refined grains were achieved at high pouring temperatures with IC-AEMS. The possible mechanisms for the enhanced grain refinement above the liquidus temperature are explained as the stable chilling layer around the cooling rod in IC-AEMS providing undercooling for the precipitation of Al3Zr nucleant particles and the high cooling rate restraining the growth rate of these particles. At the same time, forced convection promotes a more homogeneous distribution of nucleant particles.

Keywords: Al-Zn-Mg-Cu-Zr alloy; above liquidus; electromagnetic stirring; grain refinement; internal cooling.