Therapeutic vaccines for amyotrophic lateral sclerosis directed against disease specific epitopes of superoxide dismutase 1

Vaccine. 2019 Aug 14;37(35):4920-4927. doi: 10.1016/j.vaccine.2019.07.044. Epub 2019 Jul 16.

Abstract

Emerging evidence suggests seeding and prion-like propagation of mutant Superoxide Dismutase 1 (SOD1) misfolding to be a potential mechanism for ALS pathogenesis and progression. Immuno-targeting of misfolded SOD1 has shown positive clinical outcomes in mutant SOD1 transgenic mice. However, a major challenge in developing active immunotherapies for proteinopathies such as ALS is the design of immunogens enabling exclusive recognition of pathogenic species of a self-protein. Ideally, one would achieve a robust antibody response against the disease-misfolded protein while sparing the natively folded conformer to avoid inducing deleterious autoimmune complications, or inhibiting its normal function. Using a motor neuron disease mouse model expressing human SOD1-G37R, we herein report the immunogenicity and therapeutic efficacy of two ALS vaccines, tgG-DSE2lim and tgG-DSE5b, based on the notion that native SOD1 would undergo early unfolding in disease to present "disease specific epitopes" (DSE). Both vaccines elicited rapid, robust, and well-sustained epitope-specific antibody responses with a desirable Th2-biased immune response. Both vaccines significantly extended the life expectancy of hSOD1G37R mice, with tgG-DSE2lim displaying greater protection than tgG-DSE5b at earlier pre-symptomatic stage. tgG-DSE5b, but not tgG-DSE2lim, significantly delayed disease onset and appreciably slowed disease progression. This implies that conformationally distinct species of misfolded SOD1 may derive from the same mutation, thereby modifying disease phenotypes in a different fashion. Our results validate the rationale for conformation-based immuno-targeting of misfolded SOD1 as a promising therapeutic strategy to slow or even halt disease progression in familial ALS associated with SOD1 mutations, as well as a prophylactic intervention for carriers of SOD1 mutations. Our study not only provides important proof-of-principle data for the development of a safe and effective human therapeutic/prophylactic ALS vaccine against misfolded SOD1, but also predicts a great potential to extend our DSE-based vaccination approach to other types of ALS, such as those associated with TDP-43 proteinopathies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis / immunology
  • Amyotrophic Lateral Sclerosis / therapy*
  • Animals
  • Antibodies / blood
  • Disease Models, Animal
  • Disease Progression
  • Epitopes / chemistry
  • Epitopes / immunology*
  • Female
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Protein Folding
  • Superoxide Dismutase-1 / immunology*
  • Th2 Cells / immunology*
  • Vaccines / immunology
  • Vaccines / therapeutic use*

Substances

  • Antibodies
  • Epitopes
  • Vaccines
  • Superoxide Dismutase-1