Use of 1H NMR to Detect the Percentage of Pure Fruit Juices in Blends

Molecules. 2019 Jul 17;24(14):2592. doi: 10.3390/molecules24142592.

Abstract

The consumption of high-nutritional-value juice blends is increasing worldwide and, considering the large market volume, fraud and adulteration represent an ongoing problem. Therefore, advanced anti-fraud tools are needed. This study aims to verify the potential of 1H NMR combined with partial least squares regression (PLS) to determine the relative percentage of pure fruit juices in commercial blends. Apple, orange, pineapple, and pomegranate juices were selected to set up an experimental plan and then mixed in different proportions according to a central composite design (CCD). NOESY (nuclear Overhauser enhancement spectroscopy) experiments that suppress the water signal were used. Considering the high complexity of the spectra, it was necessary to pretreat and then analyze by chemometric tools the large amount of information contained in the raw data. PLS analysis was performed using venetian-blind internal cross-validation, and the model was established using different chemometric indicators (RMSEC, RMSECV, RMSEP, R2CAL, R2CV, R2PRED). PLS produced the best model, using five factors explaining 94.51 and 88.62% of the total variance in X and Y, respectively. The present work shows the feasibility and advantages of using 1H NMR spectral data in combination with multivariate analysis to develop and optimize calibration models potentially useful for detecting fruit juice adulteration.

Keywords: 1H NMR; PLS; adulteration; blends; chemometrics; fruit juice.

MeSH terms

  • Ananas / chemistry
  • Beverages / analysis*
  • Citrus sinensis / chemistry
  • Food Contamination*
  • Fruit / chemistry
  • Fruit and Vegetable Juices / analysis*
  • Humans
  • Magnetic Resonance Spectroscopy*
  • Malus / chemistry
  • Proton Magnetic Resonance Spectroscopy