Composition of soil organic matter drives total loss of dieldrin and dichlorodiphenyltrichloroethane in high-value pastures over thirty years

Sci Total Environ. 2019 Nov 15:691:135-145. doi: 10.1016/j.scitotenv.2019.06.497. Epub 2019 Jun 29.

Abstract

The residues of dieldrin and dichlorodiphenyltrichloroethane (DDT), internationally-banned agricultural insecticides, continue to exceed government guidelines in some surface soils 30 years after use. Little is known regarding the soil factors and microbial community dynamics associated with the in-situ biodegradation of these organochlorine chemicals. We hypothesised that soil organic matter, a key factor affecting microbial biomass and diversity, affects the biodegradation and total loss of the pollutants 30 years after use. We sampled 12 contaminated paddocks with residue concentrations monitoring data since 1988 that represent two different agricultural surface-soils. The total loss and current concentrations of the residues was correlated with soil physicochemical properties, microbial biomass carbon, microbial community diversity indices and microbial community abundance. Current dieldrin and DDT residue concentrations were positively correlated with soil organic matter and clay contents. However, key indicators for loss of residues after 23-30 years were low carbon-to‑nitrogen ratios, high microbial-C-to-total-C ratios and high fungal community evenness. The results support the composition of soil organic matter as an important factor affecting degradation of organochlorines and that co-metabolism of dieldrin and DDT could be enhanced by manipulating the composition of soil organic matter to cater for a broad diversity of microbial function.

Keywords: Microbial biomass; Microbial bioremediation; Organic matter; Persistent organic pollutants; Soil diversity; Xenobiotics.