Growth of WOx from Tungsten(VI) Oxo-Fluoroalkoxide Complexes with Partially Fluorinated β-Diketonate/β-Ketoesterate Ligands: Comparison of Chemical Vapor Deposition to Aerosol-Assisted CVD

ACS Appl Mater Interfaces. 2019 Aug 7;11(31):28180-28188. doi: 10.1021/acsami.9b08830. Epub 2019 Jul 30.

Abstract

Tungsten(VI) oxo complexes of the type WO(OR)3L [R = C(CH3)2CF3, C(CF3)2CH3, CH(CF3)2, L = hexafluoroacetylacetonate (hfac), ethyl trifluoroacetoacetonate (etfac), acetylacetonate (acac)] bearing partially fluorinated alkoxide and/or chelating ligands were synthesized. Thermal decomposition behavior and mass spectrometry (MS) fragmentation patterns of selected examples were studied. The thermolysis products of WO(OC(CF3)2CH3)3(hfac) were characterized by nuclear magnetic resonance and gas chromatography-MS. Studies of the sublimation behavior of the complexes demonstrated that their volatility depends on the degree of fluorination. Comparative studies of the deposition of tungsten oxide by chemical vapor deposition (CVD) and aerosol-assisted CVD were carried out using WO(OC(CF3)2CH3)3(hfac) as a single-source precursor. WOx materials were successfully deposited by both deposition methods, but the deposits differed in morphology, structure, and crystallinity.

Keywords: chemical vapor deposition; nanostructures; thermolysis; tungsten oxide; volatility.