A new perspective for nonadiabatic dynamics with phase space mapping models

J Chem Phys. 2019 Jul 14;151(2):024105. doi: 10.1063/1.5108736.

Abstract

Based on the recently developed unified theoretical framework [J. Liu, J. Chem. Phys. 145(20), 204105 (2016)], we propose a new perspective for studying nonadiabatic dynamics with classical mapping models (CMMs) of the coupled multistate Hamiltonian onto the Cartesian phase space. CMMs treat the underlying electronic state degrees of freedom classically with a simple physical population constraint while employing the linearized semiclassical initial value representation to describe the nuclear degrees of freedom. We have tested various benchmark condensed phase models where numerically exact results are available, which range from finite temperature to more challenging zero temperature, from adiabatic to nonadiabatic domains, and from weak to strong system-bath coupling regions. CMMs demonstrate overall reasonably accurate dynamics behaviors in comparison to exact results even in the asymptotic long time limit for various spin-boson models and site-exciton models. Further investigation of the strategy used in CMMs may lead to practically useful approaches to study nonadiabatic processes in realistic molecular systems in the condensed phase.