Varying temperature sensitivity of bud-burst date at different temperature conditions

Int J Biometeorol. 2021 Mar;65(3):357-367. doi: 10.1007/s00484-019-01756-4. Epub 2019 Jul 5.

Abstract

The relationship between the rate of development (DR) of bud-burst and temperature may be nonlinear, which could lead to varying temperature sensitivity (TS) of budburst date under different climate conditions. In order to determine the functional form between DR/TS and temperature, we gathered twigs with flower buds of five woody plants (Malus halliana, Forsythia suspense, Crataegus pinnatifida, Prunus cerasifera F. atropurpurea, and Berberis thunbergii var. atropurpurea Chenault) in early spring of 2017 at Beijing, and placed them in six growth chambers at same daylength but different temperature conditions (5, 10, 15, 20, 25, and 30 °C). The proportion of bud- burst was recorded every 2 or 3 days for each species at each temperature condition. The results showed that the proportion of bud-burst followed the logistic function over time at a given temperature. Subsequently, we developed a mathematical model to simulate the proportion of bud-burst at any temperature and date. The DR and TS were parameterized using a differential method. The simulation results showed that the DR increased monotonically with the rise in temperature, but only two species could reach the maximum value at 30 °C. The TS decreased with the increase in temperature, but this effect was weak when the temperature was high enough. These findings suggested that the predicted warming in the future may result in a slowdown in the advance of spring phenology of woody plants.

Keywords: Bud-burst; Climate change; Flowering; Nonlinear response; Spring phenology; Temperature sensitivity; The rate of development.

MeSH terms

  • Beijing
  • Climate*
  • Plants*
  • Seasons
  • Temperature