An X-ray gas monitor for free-electron lasers

J Synchrotron Radiat. 2019 Jul 1;26(Pt 4):1092-1100. doi: 10.1107/S1600577519005174. Epub 2019 Jun 12.

Abstract

A novel X-ray gas monitor (XGM) has been developed which allows the measurement of absolute photon pulse energy and photon beam position at all existing and upcoming free-electron lasers (FELs) over a broad spectral range covering vacuum ultraviolet (VUV), extreme ultraviolet (EUV) and soft and hard X-rays. The XGM covers a wide dynamic range from spontaneous undulator radiation to FEL radiation and provides a temporal resolution of better than 200 ns. The XGM consists of two X-ray gas-monitor detectors (XGMDs) and two huge-aperture open electron multipliers (HAMPs). The HAMP enhances the detection efficiency of the XGM for low-intensity radiation down to 105 photons per pulse and for FEL radiation in the hard X-ray spectral range, while the XGMD operates in higher-intensity regimes. The relative standard uncertainty for measurements of the absolute photon pulse energy is well below 10%, and down to 1% for measurements of relative pulse-to-pulse intensity on pulses with more than 1010 photons per pulse. The accuracy of beam-position monitoring in the vertical and horizontal directions is of the order of 10 µm.

Keywords: free-electron lasers; hard X-rays; photon diagnostics; soft X-rays; vacuum ultraviolet.

Grants and funding