A novel EEG paradigm to simultaneously and rapidly assess the functioning of auditory and visual pathways

J Neurophysiol. 2019 Oct 1;122(4):1312-1329. doi: 10.1152/jn.00868.2018. Epub 2019 Jul 3.

Abstract

Objective assessment of the sensory pathways is crucial for understanding their development across the life span and how they may be affected by neurodevelopmental disorders (e.g., autism spectrum) and neurological pathologies (e.g., stroke, multiple sclerosis, etc.). Quick and passive measurements, for example, using electroencephalography (EEG), are especially important when working with infants and young children and with patient populations having communication deficits (e.g., aphasia). However, many EEG paradigms are limited to measuring activity from one sensory domain at a time, may be time consuming, and target only a subset of possible responses from that particular sensory domain (e.g., only auditory brainstem responses or only auditory P1-N1-P2 evoked potentials). Thus we developed a new multisensory paradigm that enables simultaneous, robust, and rapid (6-12 min) measurements of both auditory and visual EEG activity, including auditory brainstem responses, auditory and visual evoked potentials, as well as auditory and visual steady-state responses. This novel method allows us to examine neural activity at various stations along the auditory and visual hierarchies with an ecologically valid continuous speech stimulus, while an unrelated video is playing. Both the speech stimulus and the video can be customized for any population of interest. Furthermore, by using two simultaneous visual steady-state stimulation rates, we demonstrate the ability of this paradigm to track both parafoveal and peripheral visual processing concurrently. We report results from 25 healthy young adults, which validate this new paradigm.NEW & NOTEWORTHY A novel electroencephalography paradigm enables the rapid, reliable, and noninvasive assessment of neural activity along both auditory and visual pathways concurrently. The paradigm uses an ecologically valid continuous speech stimulus for auditory evaluation and can simultaneously track visual activity to both parafoveal and peripheral visual space. This new methodology may be particularly appealing to researchers and clinicians working with infants and young children and with patient populations with limited communication abilities.

Keywords: Cheech; auditory; evoked potentials; steady-state responses; visual.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Adolescent
  • Adult
  • Auditory Pathways / physiology
  • Electroencephalography / methods*
  • Evoked Potentials, Auditory, Brain Stem*
  • Evoked Potentials, Visual*
  • Female
  • Humans
  • Male
  • Speech Perception
  • Visual Pathways / physiology