Utilization of Clarified Butter Sediment Waste as a Feedstock for Cost-Effective Production of Biodiesel

Foods. 2019 Jun 29;8(7):234. doi: 10.3390/foods8070234.

Abstract

The rising demand and cost of fossil fuels (diesel and gasoline), together with the need for sustainable, alternative, and renewable energy sources have increased the interest for biomass-based fuels such as biodiesel. Among renewable sources of biofuels, biodiesel is particularly attractive as it can be used in conventional diesel engines without any modification. Oleaginous yeasts are excellent oil producers that can grow easily on various types of hydrophilic and hydrophobic waste streams that are used as feedstock for single cell oils and subsequently biodiesel production. In this study, cultivation of Rhodosporidium kratochvilovae on a hydrophobic waste (clarified butter sediment waste medium (CBM)) resulted in considerably high lipid accumulation (70.74% w/w). Maximum cell dry weight and total lipid production were 15.52 g/L and 10.98 g/L, respectively, following cultivation in CBM for 144 h. Neutral lipids were found to accumulate in the lipid bodies of cells, as visualized by BODIPY staining and fluorescence microscopy. Cells grown in CBM showed large and dispersed lipid droplets in the intracellular compartment. The fatty acid profile of biodiesel obtained after transesterification was analyzed by gas chromatography-mass spectrometry (GC-MS), while its quality was determined to comply with ASTM 6751 and EN 14214 international standards. Hence, clarified sediment waste can be exploited as a cost-effective renewable feedstock for biodiesel production.

Keywords: biodiesel; clarified butter sediment waste; fatty acid methyl esters; hydrophobic substrates; lipids; oleaginous yeast.