MiR-199a-5p suppresses non-small cell lung cancer via targeting MAP3K11

J Cancer. 2019 Jun 2;10(11):2472-2479. doi: 10.7150/jca.29426. eCollection 2019.

Abstract

MicroRNAs (miRNAs) comprise a class of short, non-coding RNAs that directly target 3'UTR of mRNA, causing subsequent degradation or suppression of translation. Here, we verified that miR-199a-5p was significantly down-regulated in mouse NSCLC tissues and human patient samples. To further study the function of miR-199a-5p, lentivirus system was adopted to construct stably over-expressing miR-199a-5p A549, SPC-A1 and H1299 cell lines. Then, miR-199a-5p played a tumor suppression role via directly targeting MAP3K11 gene in non-small cell lung cancer (NSCLC). Elevated miR-199a-5p suppressed cell proliferation and arrested cell cycle in G1 phase. We found that MAP3K11 was negatively correlated with miR-199a-5p in NSCLC patient tissues and mouse xenograft tumors. Our results suggest that miR-199a-5p together with its target gene MAP3K11 is a key factor and constitutes a complicated regulation network in NSCLC.

Keywords: MAP3K11; MAPK pathway; NSCLC; miR-199a-5p; tumor suppression.