[Endocytic recycling pathways and the regulatory mechanisms]

Yi Chuan. 2019 Jun 20;41(6):451-468. doi: 10.16288/j.yczz.19-124.
[Article in Chinese]

Abstract

Endocytic transport is imperative for the exchange of information between cells and the external environment. Specifically, the process of endocytic transport comprises precise regulation of uptake and sorting of extracellular macromolecules, phospholipids, and membrane proteins. In the endocytic transport system, the recycling pathways are responsible for delivering membrane proteins and phospholipids back to the plasma membrane. Thus, endocytic recycling plays critical roles in various biological processes, including nutrient absorption, cell polarity establishment, cell migration, cell division, synaptic plasticity, immune response, and growth factor receptor regulation. There are two essential types of recycling pathways in eukaryotic cells, recycling of clathrin-dependent endocytic cargos (CDE recycling) and recycling of clathrin-independent endocytic cargos (CIE recycling). The transferrin receptor TfR and the low-density lipoprotein receptor LDLR, which have essential physiological roles in vivo, are representative membrane proteins of the CDE recycling transport. In recent years, various membrane proteins governed by CIE recycling transport have been identified, including IL2 receptor α-subunit, major histocompatibility complex MHC Class I, and glucose transporter GLUT4. Therefore, the investigation of the regulatory mechanisms of CIE recycling has drawn notable attention in the field. Moreover, CIE recycling research presents fundamental significance in cell biology, which also provides scientific evidence and potential therapeutic clues for the diagnosis and treatment strategies of diseases such as type 2 diabetes and cancer. Compared with the CDE recycling, the study on CIE recycling started later, and there is much to be learned of its regulatory mechanisms. To this end, this review summarizes the features of endocytic recycling pathways, focuses on the molecular basis of CIE recycling regulation and elaborates on the latest progress and newly developed research model systems in the field of CIE recycling.

Publication types

  • Review

MeSH terms

  • Clathrin
  • Diabetes Mellitus, Type 2
  • Endocytosis*
  • Endosomes
  • Humans
  • Membrane Proteins / physiology*
  • Protein Transport*

Substances

  • Clathrin
  • Membrane Proteins