Nanoscale zero-valent iron (nZVI) immobilization onto graphene oxide (GO)-incorporated electrospun polyvinylidene fluoride (PVDF) nanofiber membrane for groundwater remediation via gravity-driven membrane filtration

Sci Total Environ. 2019 Oct 20:688:787-796. doi: 10.1016/j.scitotenv.2019.05.393. Epub 2019 Jun 8.

Abstract

Nanoscale zero-valent iron (nZVI), with its high reactivity towards a broad range of contaminants, has been a promising material for groundwater remediation. Membrane-supported nZVI can both avoid nZVI agglomeration for better reactivity and recycle nZVI to lower the risk of secondary pollution. In this study, we successfully fabricated a PVDF-GO membrane via electrospinning technology and employed the functionalized nanofiber membrane to immobilize nZVI particles. The addition of GO into PVDF nanofibers can both increase the hydrophilicity to improve membrane flux and offer -COOH as a binder to immobilize nZVI particles. PVDF-GO-nZVI membranes with different GO loadings (0%, 0.5%, 1%, 3% of PVDF) were tested with two typical nZVI-targeted contaminants (Cd(II) and trichloroethylene (TCE)) via gravity-driven membrane filtration. The results show that membrane with 1% GO had the best nZVI distribution against the aggregation and a better performance in both Cd removal (100%) and TCE removal (82%). The nZVI membrane had a high flux in gravity-driven filtration at 255 LMH for Cd(II) and 265 LMH for TCE respectively. Generally, the developed PVDF-GO-nZVI electrospun nanofiber membrane had an excellent performance in the gravity-driven membrane filtration system for groundwater remediation.

Keywords: Electrospun nanofiber membrane; Graphene oxide; Gravity-driven membrane filtration; Groundwater remediation; Nano-scale zero valent iron.