Synthesis, Characterization and Fabrication of Graphene/Boron Nitride Nanosheets Heterostructure Tunneling Devices

Nanomaterials (Basel). 2019 Jun 27;9(7):925. doi: 10.3390/nano9070925.

Abstract

Various types of 2D/2D prototype devices based on graphene (G) and boron nitride nanosheets (BNNS) were fabricated to study the charge tunneling phenomenon pertinent to vertical transistors for digital and high frequency electronics. Specifically, G/BNNS/metal, G/SiO2, and G/BNNS/SiO2 heterostructures were investigated under direct current (DC-bias) conditions at room temperature. Bilayer graphene and BNNS were grown separately and transferred subsequently onto the substrates to fabricate 2D device architectures. High-resolution transmission electron microscopy confirmed the bilayer graphene structure and few layer BNNS sheets having a hexagonal B3-N3 lattice. The current vs voltage I(V) data for the G/BNNS/Metal devices show Schottky barrier characteristics with very low forward voltage drop, Fowler-Nordheim behavior, and 10-4 Ω/sq. sheet resistance. This result is ascribed to the combination of fast electron transport within graphene grains and out-of-plane tunneling in BNNS that circumvents grain boundary resistance. A theoretical model based on electron tunneling is used to qualitatively describe the behavior of the 2D G/BNNS/metal devices.

Keywords: 2D materials; boron nitride nanosheets; graphene; heterostructures; tunneling device.