Thermoelectric Properties of Cu2SnSe3-SnS Composite

Materials (Basel). 2019 Jun 26;12(13):2040. doi: 10.3390/ma12132040.

Abstract

Heavily doped degenerate semiconductors such as Cu2SnSe3 (CTSe) attracted attention in thermoelectric (TE) and optoelectronic fields, due to their high electrical conductivity and small band gap. The small Seebeck coefficient of undoped CTSe, however, is the major issue in achieving high TE performance (figure of merit, ZT). Here, we report that the Seebeck coefficient of CTSe can be controlled by adding SnS within a CTSe matrix. CTSe-SnS composite has not only high Seebeck coefficient in the range of 300-500 µVolt/K but thermal conductivity which is lower than that of pristine CTSe due to the scattering at the interface between the matrix and the SnS particles. A reasonable ZT of 0.18 is achieved at 570 K by adding a small amount (3 wt.%) of SnS to the CTSe matrix.

Keywords: Cu2SnSe3; composites; thermoelectric.