Populations and Dynamics of Guanine Radicals in DNA strands-Direct versus Indirect Generation

Molecules. 2019 Jun 26;24(13):2347. doi: 10.3390/molecules24132347.

Abstract

Guanine radicals, known to be involved in the damage of the genetic code and aging, are studied by nanosecond transient absorption spectroscopy. They are generated in single, double and four-stranded structures (G-quadruplexes) by one and two-photon ionization at 266 nm, corresponding to a photon energy lower than the ionization potential of nucleobases. The quantum yield of the one-photon process determined for telomeric G-quadruplexes (TEL25/Na+) is (5.2 ± 0.3) × 10-3, significantly higher than that found for duplexes containing in their structure GGG and GG sequences, (2.1 ± 0.4) × 10-3. The radical population is quantified in respect of the ejected electrons. Deprotonation of radical cations gives rise to (G-H1) and (G-H2) radicals for duplexes and G-quadruplexes, respectively. The lifetimes of deprotonated radicals determined for a given secondary structure strongly depend on the base sequence. The multiscale non-exponential dynamics of these radicals are discussed in terms of inhomogeneity of the reaction space and continuous conformational motions. The deviation from classical kinetic models developed for homogeneous reaction conditions could also be one reason for discrepancies between the results obtained by photoionization and indirect oxidation, involving a bi-molecular reaction between an oxidant and the nucleic acid.

Keywords: DNA; electron holes; guanine quadruplexes; inhomogeneous reactions; oxidative damage; photo-ionization; radicals; time-resolved spectroscopy.

MeSH terms

  • Base Sequence
  • DNA / chemistry*
  • DNA Damage
  • Free Radicals / chemistry*
  • G-Quadruplexes
  • Guanine / chemistry*
  • Molecular Structure
  • Nucleic Acid Conformation
  • Nucleic Acids / chemistry
  • Oxidation-Reduction
  • Spectrum Analysis

Substances

  • Free Radicals
  • Nucleic Acids
  • Guanine
  • DNA