Coupled Kinetics Model for Microbially Mediated Arsenic Reduction and Adsorption/Desorption on Iron Oxides: Role of Arsenic Desorption Induced by Microbes

Environ Sci Technol. 2019 Aug 6;53(15):8892-8902. doi: 10.1021/acs.est.9b00109. Epub 2019 Jun 27.

Abstract

The dynamic behavior of arsenic (As) species is closely associated with iron mineral dissolution/transformation in the environment. Bacterially induced As(V) desorption from iron oxides may be another important process that facilitates As(V) release from iron oxides without significant reductive dissolution of iron oxides. Under the impact of bacterially induced desorption, As kinetic behavior is controlled by both the microbial reduction of As(V) and the As(III)&As(V) reactions on iron oxide surfaces. However, there is still a lack of quantitative understanding on the coupled kinetics of these processes in complex systems. We developed a quantitative model that integrated the time-dependent microbial reduction of As(V) with nonlinear As(III)&As(V) adsorption/desorption kinetics on iron oxides under the impact of bacterially induced As(V) desorption. We collected and modeled literature data from 11 representative studies, in which microbial reduction reactions occurred with minimal iron oxide dissolution/transformation. Our model highlighted the significance of microbially induced As(V) desorption and time-dependent changes of microbial reduction rates. The model can quantitatively assess the roles and the coupling of individual reactions in controlling the overall reaction rates. It provided a basis for developing comprehensive models for As cycling in the environment by coupling with other chemical, physical, and microbial processes.

MeSH terms

  • Adsorption
  • Arsenic*
  • Ferric Compounds
  • Kinetics
  • Oxidation-Reduction
  • Oxides

Substances

  • Ferric Compounds
  • Oxides
  • ferric oxide
  • Arsenic