Ultrahigh Water Flow Enhancement by Optimizing Nanopore Chemistry and Geometry

Langmuir. 2019 Jul 2;35(26):8867-8873. doi: 10.1021/acs.langmuir.9b01179. Epub 2019 Jun 19.

Abstract

The high permeability of nanoporous membranes is crucial for separation processes and energy conversions, especially for the world today that is facing growing water scarcity and energy demands. Unfortunately, further improving permeability, without sacrificing the required selectivity for specific applications, is still extremely challenging. Here, we shed light on the mechanisms of extremely high water permeability of artificial nanopores with the aquaporin-inspired pore geometry and propose a simple yet practical optimization strategy by using computational research to relate nanopore chemistry and geometry to permeability performance. We demonstrated that an ultrahigh water flow enhancement, up to 7 orders of magnitude, can be achieved by optimizing the combination of chemical and geometrical parameters of bioinspired artificial nanopores. Moreover, we addressed an existing debate over the water flow enhancement spanning over 10-1 to 105, attributed to the huge differences in chemical and geometrical properties. Our work provides a guideline to the design and optimization of nanofluidic devices with excellent performance.