Negatively-charged nanofiltration membrane and its hexavalent chromium removal performance

J Colloid Interface Sci. 2019 Oct 1:553:475-483. doi: 10.1016/j.jcis.2019.06.051. Epub 2019 Jun 17.

Abstract

To enhance hexavalent chromium (Cr(VI)) removal performance under acidic conditions, the nanofiltration (NF) membrane with enhanced negative charge was fabricated via introducing 2, 5-diaminobenzenesulfonic acid (DABSA) into polyamide layer. The control membrane (NF-P) was directly prepared from piperazine and 1, 3, 5-benzenetricarbonyltrichloride. Surface chemical compositions, morphology, surface charge, pore size, permeability and pH-dependent separation performance of the fabricated membranes were characterized. The membranes showed the similar water permeance (∼11.5 L m-2 h-1 bar-1) and Na2SO4 rejections (∼98%) under neutral environments. The DABSA introduced NF membrane (NF-PD) was negatively charged in the pH range of 2.5-11, while the isoelectric point for NF-P was ∼pH 4.0. Cr(VI) removal ability was then evaluated under various concentrations and pH environments. The results indicated that NF-PD showed the better Cr(VI) rejection performance in all tested conditions than NF-P, especially under acidic environments (e.g., pH 4 and pH 5). Moreover, there was a fluctuation of the rejection with the increase of Cr(VI) concentration under acidic environments, which was mainly caused by the formation of Cr2O72- species. The harmful Cr(VI) was efficiently removed by the NF membrane with enhanced negative charge under acidic environments, which indicated the wider application range of the NF membrane.

Keywords: 2, 5-Diaminobenzenesulfonic acid (DABSA); Donnan exclusion; Hexavalent chromium Cr(VI); Nanofiltration; Negative charge.