Topological assessment of gait synchronisation in overground walking groups

Hum Mov Sci. 2019 Aug:66:541-553. doi: 10.1016/j.humov.2019.06.007. Epub 2019 Jun 17.

Abstract

Walking is one of the fundamental forms of human gross motor activity in which spatiotemporal movement coordination can occur. While considerable body of evidence already exists on pedestrian movement coordination while walking in pairs, little is known about gait control while walking in more complex topological arrangements. To this end, this study provides some of the first evidence of spontaneous gait synchronisation while walking in a group. Nine subjects covered the total distance of 40 km at different speeds while assembled in a three-by-three formation. Two experimental protocols were applied in which the subjects were either not specifically asked to or specifically asked to synchronise their gait. To obtain results representative from the point of view of gait control, the movement coordination was quantified using the indirectly measured vertical component of ground reaction force, based on output from a network of wireless motion monitors. Bivariate phase difference analysis was conducted using wavelet transform, synchronisation strength measures derived from Shannon entropy, and circular statistics. A fundamental relationship describing the influence of the group walking speed on individuals' pacing frequency was established, showing a positive correlation different from that previously reported for walking in solitude. A positive correlation was found between the average synchronisation strength within a group and group's walking speed. The most persistent coordination patterns were identified for pedestrians walking front-to-back and side-by-side. Overall, the spontaneous gait synchronisation while walking in a group is relatively weak, well below the levels reported for walking in pairs.

Keywords: Crowd dynamics; Group synchronisation; Movement coordination; Stepping behaviour; Walking patterns.