A nonnative habitat-former mitigates native habitat loss for endemic reef fishes

Ecol Appl. 2019 Oct;29(7):e01956. doi: 10.1002/eap.1956. Epub 2019 Jul 16.

Abstract

Animals that select the best available habitats are most likely to succeed in degraded environments, but ecological change can create evolutionarily unfamiliar habitats that may be under- or over-utilized by native fauna. In temperate coastal waters, eutrophication and grazing have driven a global decline in native seaweeds and facilitated the establishment of nonnative seaweeds that provide novel macrophyte habitat. We tested whether a nonnative kelp canopy (wakame Undaria pinnatifida) functions as a viable habitat or ecological trap for several endemic reef fishes on urchin-grazed reefs in southern Australia. We assessed the willingness of fish to utilize native vs. wakame kelp canopy via a laboratory habitat choice experiment and by recording natural recruitment to specially constructed boulder reefs with manipulated kelp canopy. We also compared fish communities on natural reefs using a before-after-control-impact survey of wakame patches, and to assess the quality of wakame habitat for resident fish, compared fitness metrics for fish collected from habitats with native vs. wakame kelp canopy. Endemic fishes did not distinguish between the native or wakame canopy but preferred both to barren reef habitats. On urchin-grazed natural reefs, fish occurred in higher abundance and diversity where seasonal wakame canopy was present. Fitness metrics in fish collected from wakame patches were comparable to those in fish from adjacent native kelp patches. These findings indicate that the nonnative canopy provides a viable habitat for endemic fish and may play a role in sustaining native fauna populations in this degraded ecosystem. More broadly, we recommend that managers consider the role of nonnative habitats within the context of environmental change, as endemic fauna may benefit from nonnative habitat-formers in areas where their native counterparts cannot persist.

Keywords: HIREC; ecological trap; fitness; habitat quality; habitat selection; invasion ecology; kelp canopy; urchin barrens; wakame.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Coral Reefs
  • Ecology
  • Ecosystem*
  • Fishes
  • Kelp*