Modification of the DRASTIC Framework for Mapping Groundwater Vulnerability Zones

Ground Water. 2020 May;58(3):441-452. doi: 10.1111/gwat.12919. Epub 2019 Jul 12.

Abstract

The DRASTIC technique is commonly used to assess groundwater vulnerability. The main disadvantage of the DRASTIC method is the difficulty associated with identifying appropriate ratings and weight assignments for each parameter. To mitigate this issue, ratings and weights can be approximated using different methods appropriate to the conditions of the study area. In this study, different linear (i.e., Wilcoxon test and statistical approaches) and nonlinear (Genetic algorithm [GA]) modifications for calibration of the DRASTIC framework using nitrate (NO3 ) concentrations were compared through the preparation of groundwater vulnerability maps of the Meshqin-Shahr plain, Iran. Twenty-two groundwater samples were collected from wells in the study area, and their respective NO3 concentrations were used to modify the ratings and weights of the DRASTIC parameters. The areas found to have the highest vulnerability were in the eastern, central, and western regions of the plain. Results showed that the modified DRASTIC frameworks performed well, compared to the unmodified DRASTIC. When measured NO3 concentrations were correlated with the vulnerability indices produced by each method, the unmodified DRASTIC method performed most poorly, and the Wilcoxon-GA-DRASTIC method proved optimal. Compared to the unmodified DRASTIC method with an R2 of 0.22, the Wilcoxon-GA-DRASTIC obtained a maximum R2 value of 0.78. Modification of DRASTIC parameter ratings was found to be more efficient than the modification of the weights in establishing an accurately calibrated DRASTIC framework. However, modification of parameter ratings and weights together increased the R2 value to the highest degree.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Environmental Monitoring
  • Groundwater*
  • Iran
  • Models, Theoretical
  • Nitrates / analysis

Substances

  • Nitrates