Prospective acceleration of parallel RF transmission-based 3D chemical exchange saturation transfer imaging with compressed sensing

Magn Reson Med. 2019 Nov;82(5):1812-1821. doi: 10.1002/mrm.27875. Epub 2019 Jun 17.

Abstract

Purpose: To develop prospectively accelerated 3D CEST imaging using compressed sensing (CS), combined with a saturation scheme based on time-interleaved parallel transmission.

Methods: A variable density pseudo-random sampling pattern with a centric elliptical k-space ordering was used for CS acceleration in 3D. Retrospective CS studies were performed with CEST phantoms to test the reconstruction scheme. Prospectively CS-accelerated 3D-CEST images were acquired in 10 healthy volunteers and 6 brain tumor patients with an acceleration factor (RCS ) of 4 and compared with conventional SENSE reconstructed images. Amide proton transfer weighted (APTw) signals under varied RF saturation powers were compared with varied acceleration factors.

Results: The APTw signals obtained from the CS with acceleration factor of 4 were well-preserved as compared with the reference image (SENSE R = 2) both in retrospective phantom and prospective healthy volunteer studies. In the patient study, the APTw signals were significantly higher in the tumor region (gadolinium [Gd]-enhancing tumor core) than in the normal tissue (p < .001). There was no significant APTw difference between the CS-accelerated images and the reference image. The scan time of CS-accelerated 3D APTw imaging was dramatically reduced to 2:10 minutes (in-plane spatial resolution of 1.8 × 1.8 mm2 ; 15 slices with 4-mm slice thickness) as compared with SENSE (4:07 minutes).

Conclusion: Compressed sensing acceleration was successfully extended to 3D-CEST imaging without compromising CEST image quality and quantification. The CS-based CEST imaging can easily be integrated into clinical protocols and would be beneficial for a wide range of applications.

Keywords: APT; CEST; brain tumor; compressed sensing; parallel RF transmission.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Neoplasms / diagnostic imaging*
  • Contrast Media
  • Data Compression
  • Female
  • Glioma / diagnostic imaging*
  • Healthy Volunteers
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging / methods*
  • Male
  • Phantoms, Imaging
  • Prospective Studies
  • Retrospective Studies

Substances

  • Contrast Media