Improving the thermal stability of different types of xylan by acetylation

Carbohydr Polym. 2019 Sep 15:220:132-140. doi: 10.1016/j.carbpol.2019.05.063. Epub 2019 May 24.

Abstract

The impact of various degrees of acetylation on improving the thermal stability of xylan isolated from different botanical source has been studied; methylglucuronoxylan from birch and eucalyptus, arabinoglucuronoxylan from spruce and glucuronoarabinoxylan from sugarcane bagasse and straw. The lower molecular weight of non- acetylated methylglucuronoxylan (17.7-23.7 kDa) and arabinoglucuronoxylan (16.8 kDa) meant that they were more soluble in water than glucuronoarabinoxylan (43.0-47.0 kDa). The temperature at the onset of degradation increased by 17-61 °C and by 75-145 °C for low and high acetylated xylans respectively, as a result of acetylation. A glass transition temperature in the range of 121-132 °C was observed for the samples non-acetylated and acetylated at low degree of acetylation (0.0-0.6). The acetylation to higher degrees (1.4-1.8) increased the glass transition temperature of the samples to 189-206 °C. Acetylation proved to be an efficient method for functionalization of the xylan to increase the thermal stability.

Keywords: Acetylation; Hardwood; Molecular weight; Softwood; Sugarcane residues.