Two-Step-Enhanced Stability of Quantum Dots via Silica and Siloxane Encapsulation for the Long-Term Operation of Light-Emitting Diodes

ACS Appl Mater Interfaces. 2019 Jun 26;11(25):22801-22808. doi: 10.1021/acsami.9b06987. Epub 2019 Jun 13.

Abstract

Despite innovative optical properties of quantum dots (QDs) for QDs-converted light-emitting diodes (QD-LEDs), the vulnerability of the QDs, against heat and moisture, has been a critical issue for commercialization and long-term use. To overcome the instabilities, we fabricated a thermally and photostable QDs-embedded silica/siloxane (S-QD/siloxane) film by embedding QDs in silica and siloxane encapsulation through a two-step sol-gel reaction. S-QDs were stably dispersed in the oligo-siloxane resin with even a QD concentration of 5 wt % without aggregation. The two-step physical barriers of silica and siloxane acted to decrease the toxicity of QDs and improve the stability against heat and moisture [85 °C/5% relative humidity (RH), 85 °C/85% RH, and 120 °C/5% RH], light (50 and 100 mA), and chemicals (ethanol, HCl, and NaOH). Our S-QD/siloxane film was applied as a color-conversion material on a blue LED chip without additional solidification and encapsulation processes for red and white QD-LEDs, exhibiting a wider color gamut (107% in CIE 1931) compared to NTSC. These enhancements indicate that our S-QD/siloxane film is a suitable material for long-term operation of QD-enhanced films and QD-LEDs in next-generation displays.

Keywords: long-term operation; quantum dots; sol−gel reaction; thermal and photostability; white light-emitting diodes.