Tourmaline-Modified FeMnTiO x Catalysts for Improved Low-Temperature NH3-SCR Performance

Environ Sci Technol. 2019 Jun 18;53(12):6989-6996. doi: 10.1021/acs.est.9b02620. Epub 2019 Jun 3.

Abstract

Low temperature NH3 selective catalytic reduction (NH3-SCR) technology is an efficient and economical strategy for cutting NO x emissions from power-generating equipment. In this study, a novel and highly efficient NH3-SCR catalyst, tourmaline-modified FeMnTiO x is presented, which was synthesized by a simple one-step sol-gel method. We found that the amount of tourmaline has an important impact on the catalytic performance of the modified FeMnTiO x-based catalysts, and the NO x conversion exceeded 80% from 160 to 380 °C with the addition of 5 wt % tourmaline. Compared with the pure FeMnTiO x, the catalytic efficiency at a temperature below 100 °C was increased by nearly 18.9%, and the operation temperature window was broadened significantly. The enhanced catalytic performance of the FeMnTiO x catalyst was mainly attributed to the small spherical nanoparticles structure around the tourmaline powders, resulting in the increased content of Mn3+, Mn4+, and chemical oxygen on the catalytic surface. These as-developed tourmaline-modified FeMnTiO x materials have been demonstrated to be promising as a new type highly efficient low temperature NH3-SCR catalyst.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonia*
  • Catalysis
  • Cold Temperature*
  • Silicates
  • Temperature

Substances

  • Silicates
  • tourmaline
  • Ammonia