Flexible Memristors Based on Single-Crystalline Ferroelectric Tunnel Junctions

ACS Appl Mater Interfaces. 2019 Jul 3;11(26):23313-23319. doi: 10.1021/acsami.9b04738. Epub 2019 Jun 20.

Abstract

Ferroelectric tunnel junction (FTJ) based memristors exhibiting continuous electric field controllable resistance states have been considered promising candidates for future high-density memories and advanced neuromorphic computational architectures. However, the use of rigid single crystal substrate and high temperature growth of the epitaxial FTJ thin films constitutes the main obstacles to using this kind of heterostructure in flexible computing devices. Here, we report the integration of centimeter-scale single crystalline FTJs on flexible plastic substrates, by water-etching based epitaxial oxide membrane lift-off and the following transfer. The resulting highly flexible FTJ membranes retain the single-crystalline structure along with stable and switchable ferroelectric polarization as the grown-on single crystal substrate state. We show that the obtained flexible memristors, i.e., FTJs on plastic substrates, present high speed and low voltage mediated memristive behaviors with resistance changes over 500% and are stable against shape change. This work is an essential step toward the realization of epitaxial ultrathin ferroelectric oxide film-based electronics on large-area, flexible, and affordable substrates.

Keywords: epitaxial oxide film transfer; ferroelectric tunnel junction; ferroelectrics; flexible nonvolatile memory; functional oxides.